Shortcuts
Please wait while page loads.
SISSA Library . Default .
PageMenu- Main Menu-
Page content

Catalogue Display

Computational Modeling in Biological Fluid Dynamics

Computational Modeling in Biological Fluid Dynamics
Catalogue Information
Field name Details
Dewey Class 570.285
Title Computational Modeling in Biological Fluid Dynamics ([EBook] /) / edited by Lisa J. Fauci, Shay Gueron.
Added Personal Name Fauci, Lisa J. editor.
Gueron, Shay editor.
Other name(s) SpringerLink (Online service)
Publication New York, NY : : Springer New York : : Imprint: Springer, , 2001.
Physical Details X, 247 p. : online resource.
Series The IMA volumes in mathematics and its applications 0940-6573 ; ; 124
ISBN 9781461301516
Summary Note This IMA Volume in Mathematics and its Applications COMPUTATIONAL MODELING IN BIOLOGICAL FLUID DYNAMICS is based on the proceedings of a very successful workshop with the same title. The workshop was an integral part of the September 1998 to June 1999 IMA program on "MATHEMATICS IN BIOLOGY." I would like to thank the organizing committee: Lisa J. Fauci of Tulane University and Shay Gueron of Technion - Israel Institute of Technology for their excellent work as organizers of the meeting and for editing the proceedings. I also take this opportunity to thank the National Science Founda­ tion (NSF), whose financial support of the IMA made the Mathematics in Biology program possible. Willard Miller, Jr., Professor and Director Institute for Mathematics and its Applications University of Minnesota 400 Lind Hall, 207 Church St. SE Minneapolis, MN 55455-0436 612-624-6066, FAX 612-626-7370 miller@ima.umn.edu World Wide Web: http://www.ima.umn.edu v PREFACE A unifying theme in biological fluid dynamics is the interaction of moving, elastic boundaries with a surrounding fluid. A complex dynami­ cal system describes the motion of red blood cells through the circulatory system, the movement of spermatazoa in the reproductive tract, cilia of microorganisms, or a heart pumping blood. The revolution in computa­ tional technology has allowed tremendous progress in the study of these previously intractable fluid-structure interaction problems.:
Contents note Fluid mechanics of ciliary propulsion -- The role of cyclic nucleotide pathways and calmodulin in ciliary stimulation -- A numerical method for simulating fast-swimming motions -- A fluid-structure interaction model of ciliary beating -- Energetic considerations of ciliary beating -- Fluid dynamics of animal appendages that capture molecules: Arthropod olfactory antennae -- Cartesian grid methods for fluid flow in complex geometries -- Computed simulations of ciliary and flagellar motility using the geometric clutch model can replicate a wide variety of experimental conditions -- A one-dimensional fluid dynamic model of the systemic arteries -- Hydrodynamics of liquid capsules enclosed by elastic membranes -- Unsteady aerodynamics of two dimensional insect flight -- List of workshop participants.
System details note Online access to this digital book is restricted to subscription institutions through IP address (only for SISSA internal users)
Internet Site http://dx.doi.org/10.1007/978-1-4613-0151-6
Links to Related Works
Subject References:
Authors:
Corporate Authors:
Series:
Classification:
Catalogue Information 45001 Beginning of record . Catalogue Information 45001 Top of page .

Reviews


This item has not been rated.    Add a Review and/or Rating45001
Quick Search