Shortcuts
Please wait while page loads.
SISSA Library . Default .
PageMenu- Main Menu-
Page content

Catalogue Display

Numerical Methods in Computational Electrodynamics: Linear Systems in Practical Applications /

Numerical Methods in Computational Electrodynamics: Linear Systems in Practical Applications /
Catalogue Information
Field name Details
Dewey Class 004.0151
Title Numerical Methods in Computational Electrodynamics ([EBook] :) : Linear Systems in Practical Applications / / by Ursula van Rienen.
Author Rienen, Ursula van
Other name(s) SpringerLink (Online service)
Publication Berlin, Heidelberg : : Springer Berlin Heidelberg : : Imprint: Springer, , 2001.
Physical Details XIII, 375 p. 122 illus., 91 illus. in color. : online resource.
Series Lecture Notes in Computational Science and Engineering 1439-7358 ; ; 12
ISBN 9783642568022
Summary Note treated in more detail. They are just specimen of larger classes of schemes. Es­ sentially, we have to distinguish between semi-analytical methods, discretiza­ tion methods, and lumped circuit models. The semi-analytical methods and the discretization methods start directly from Maxwell's equations. Semi-analytical methods are concentrated on the analytical level: They use a computer only to evaluate expressions and to solve resulting linear algebraic problems. The best known semi-analytical methods are the mode matching method, which is described in subsection 2. 1, the method of integral equations, and the method of moments. In the method of integral equations, the given boundary value problem is transformed into an integral equation with the aid of a suitable Greens' function. In the method of moments, which includes the mode matching method as a special case, the solution function is represented by a linear combination of appropriately weighted basis func­ tions. The treatment of complex geometrical structures is very difficult for these methods or only possible after geometric simplifications: In the method of integral equations, the Greens function has to satisfy the boundary condi­ tions. In the mode matching method, it must be possible to decompose the domain into subdomains in which the problem can be solved analytically, thus allowing to find the basis functions. Nevertheless, there are some ap­ plications for which the semi-analytic methods are the best suited solution methods. For example, an application from accelerator physics used the mode matching technique (see subsection 5. 4).:
Contents note 1.Classical Electrodynamics -- 2. Numerical Field Theory -- 3. Numerical Treatment of Linear Systems -- 4. Applications from Electrical Engineering -- 5. Applications from Accelerator Physics -- Summary -- References -- Symbols.
System details note Online access to this digital book is restricted to subscription institutions through IP address (only for SISSA internal users)
Internet Site http://dx.doi.org/10.1007/978-3-642-56802-2
Links to Related Works
Subject References:
Authors:
Corporate Authors:
Series:
Classification:
Catalogue Information 46158 Beginning of record . Catalogue Information 46158 Top of page .

Reviews


This item has not been rated.    Add a Review and/or Rating46158
Quick Search