Shortcuts
Please wait while page loads.
SISSA Library . Default .
PageMenu- Main Menu-
Page content

Catalogue Display

Graphs and Discrete Dirichlet Spaces

Graphs and Discrete Dirichlet Spaces
Catalogue Information
Field name Details
Dewey Class 511.5
Title Graphs and Discrete Dirichlet Spaces ([EBook] /) / by Matthias Keller, Daniel Lenz, Radosław K. Wojciechowski.
Author Keller, Matthias
Added Personal Name Lenz, Daniel
Wojciechowski, Radosław K.
Other name(s) SpringerLink (Online service)
Edition statement 1st ed. 2021.
Publication Cham : : Springer International Publishing : : Imprint: Springer, , 2021.
Physical Details XV, 668 p. 4 illus. : online resource.
Series Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics 2196-9701 ; ; 358
ISBN 9783030814595
Summary Note The spectral geometry of infinite graphs deals with three major themes and their interplay: the spectral theory of the Laplacian, the geometry of the underlying graph, and the heat flow with its probabilistic aspects. In this book, all three themes are brought together coherently under the perspective of Dirichlet forms, providing a powerful and unified approach. The book gives a complete account of key topics of infinite graphs, such as essential self-adjointness, Markov uniqueness, spectral estimates, recurrence, and stochastic completeness. A major feature of the book is the use of intrinsic metrics to capture the geometry of graphs. As for manifolds, Dirichlet forms in the graph setting offer a structural understanding of the interaction between spectral theory, geometry and probability. For graphs, however, the presentation is much more accessible and inviting thanks to the discreteness of the underlying space, laying bare the main concepts while preserving the deep insights of the manifold case. Graphs and Discrete Dirichlet Spaces offers a comprehensive treatment of the spectral geometry of graphs, from the very basics to deep and thorough explorations of advanced topics. With modest prerequisites, the book can serve as a basis for a number of topics courses, starting at the undergraduate level.:
Contents note Part 0 Prelude -- Chapter 0 Finite Graphs -- Part 1 Foundations and Fundamental Topics -- Chapter 1 Infinite Graphs – Key Concepts -- Chapter 2 Infinite Graphs – Toolbox -- Chapter 3 Markov Uniqueness and Essential Self-Adjointness -- Chapter 4 Agmon–Allegretto–Piepenbrink and Persson Theorems -- Chapter 5 Large Time Behavior of the Heat Kernel -- Chapter 6 Recurrence -- Chapter 7 Stochastic Completeness -- Part 2 Classes of Graphs -- Chapter 8 Uniformly Positive Measure -- Chapter 9 Weak Spherical Symmetry -- Chapter 10 Sparseness and Isoperimetric Inequalities -- Part 3 Geometry and Intrinsic Metrics -- Chapter 11 Intrinsic Metrics: Definition and Basic Facts -- Chapter 12 Harmonic Functions and Caccioppoli Theory -- Chapter 13 Spectral Bounds -- Chapter 14 Volume Growth Criterion for Stochastic Completeness and Uniqueness Class -- Appendix A The Spectral Theorem -- Appendix B Closed Forms on Hilbert Spaces -- Appendix C Dirichlet Forms and Beurling–Deny Criteria -- Appendix D Semigroups, Resolvents and their Generators -- Appendix E Aspects of Operator Theory -- References -- Index -- Notation Index.
Mode of acces to digital resource Mode of access: World Wide Web. System requirements: Internet Explorer 6.0 (or higher) or Firefox 2.0 (or higher). Available as searchable text in PDF format.
System details note Online access to this digital book is restricted to subscription institutions through IP address (only for SISSA internal users).
Internet Site https://doi.org/10.1007/978-3-030-81459-5
Links to Related Works
Subject References:
Authors:
Corporate Authors:
Series:
Classification:
Catalogue Information 51922 Beginning of record . Catalogue Information 51922 Top of page .

Reviews


This item has not been rated.    Add a Review and/or Rating51922
Quick Search